double complex function BSYALggpppp(e1,p2,p3,e4,za,zb,zab,zba) implicit none C-----Authors: John Campbell and Keith Ellis, March 2012 C---- arXiv:1101.5947 [hep-ph], Eq. (92), fully Badger-compliant C---- (These are twiddle functions, c.f.arXiv:1101.5947[hep-ph],Eq.(91)) include 'constants.f' include 'masses.f' include 'zprods_decl.f' include 'sprods_com.f' include 'zabprods_decl.f' include 'qdef.f' include 'massiveintegrals.f' double precision s12,mt2 double complex ze1xK12xK23xe4,BSYA0ggpppp,A0ggpppp integer e1,p2,p3,e4,j C-----setup variable controlling integrals to be used, C-----depending on whether p2=2 or 3 j=p2-1 mt2=mt**2 s12=mt2+s(1,p2) A0ggpppp=BSYA0ggpppp(e1,p2,p3,e4,za,zb,zab,zba) ze1xK12xK23xe4= & zab(e1,q1,p2)*za(p2,e4)+zab(e1,q1,p3)*za(p3,e4) & +za(e1,p2)*zb(p2,p3)*za(p3,e4) BSYALggpppp = & +I41x2x3x4(j)*mt**3*za(e1,e4)*zb(p2,p3)**2 & -F212(j)*(mt**3*zb(p2,p3)*(2d0*s12*za(e1,e4)-ze1xK12xK23xe4) & /(za(p2,p3)*zab(p2,q1,p2)**2)) & +0.5d0*A0ggpppp*(I2m-1d0) & -(mt*zb(p2,p3)*(za(e1,e4)*zab(p2,q1,p2)+ze1xK12xK23xe4) & /(2d0*za(p2,p3)*zab(p2,q1,p2)) & -mt*(za(e1,e4)*zab(p2,q1,p2)-za(p2,e1)*za(p3,e4)*zb(p2,p3)) & /(3d0*za(p2,p3)**2)) return end