double complex function qlfndd(n,x,iep) C----Implementation of DD Eq. 4.11 C----%\cite{Denner:2005nn} C----\bibitem{Denner:2005nn} C---- A.~Denner and S.~Dittmaier, C---- %``Reduction schemes for one-loop tensor integrals,'' C---- Nucl.\ Phys.\ B {\bf 734}, 62 (2006) C---- [arXiv:hep-ph/0509141]. C---- %%CITATION = NUPHA,B734,62;%% implicit none include 'qlconstants.f' integer j,n,infty double complex xm1,x,cln double precision iep logical qlzero parameter(infty=16) ! number of terms in sum xm1=x-cone if (abs(x) .lt. 10d0) then if (qlzero(abs(x-cone))) then qlfndd=czip else qlfndd=(cone-dcmplx(x**(n+1)))*(cln(xm1,iep)-cln(x,iep)) endif do j=0,n qlfndd=qlfndd-dcmplx(x**(n-j))/dfloat(j+1) enddo elseif (abs(x) .ge. 10d0) then qlfndd=cln(cone-cone/x,iep) do j=n+1,n+infty qlfndd=qlfndd+dcmplx(x**(n-j))/dfloat(j+1) enddo endif return end